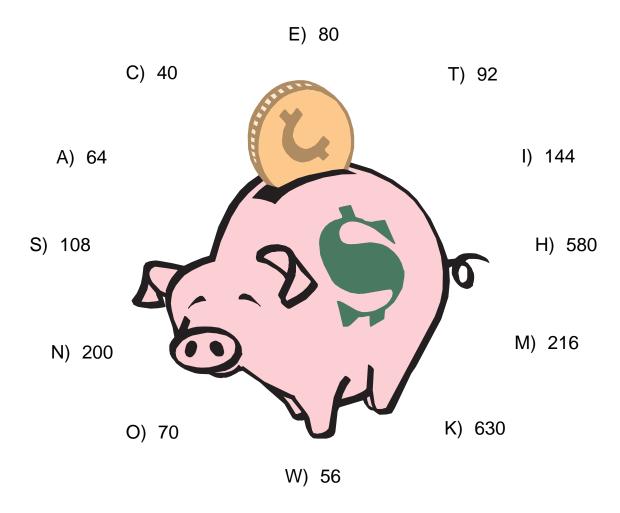
Table of Contents

The Beginning of Algebra
Amazing Face (I)—Solving problems using order of operations
Amazing Face (II)—Solving problems using order of operations
Name That Term—Defining algebraic terms
"Express" Yourself—Translating phrases into algebraic expressions
Lipstick Lady—Identifying expressions
Writer's Dilemma—Using variables and evaluating expressions
A Really "Pig" Show—Identifying properties of multiplication and addition
Integers
A Sensible Solution—Comparing and ordering integers
"Spl-Integers"—Adding integers
A Military Matter—Adding and subtracting integers
Puzzling Problem—Multiplying and dividing integers
Too Fast!—Multiplying and dividing integers
One-Step Equations
Lovesick—Solving equations using the addition or subtraction steps
A Croaking Crook—Solving equations using the inverse operation
The Wacky Werewolf—Solving equations using the inverse operation
Factors and Fractions
Rational Numbers (+ and -)
The Problem with Pachyderms—Adding and subtracting mixed numbers
"Stair" Crazy—Solving equations involving addition and subtraction of rational numbers
Rabbit Riddle—Completing mathematical sequences
Rational Numbers (x and ÷)
Pilot Puzzle—Multiplying positive and negative decimals
Duck Cookies—Multiplying and dividing fractions
A Dating Disaster—Solving multiplication and division equations
Reggae Frog—Writing numbers in scientific notation
Multi-Step Equations
Words of Wisdom—Solving two-step equations
Go, Team, Go!—Solving equations with variables on both sides of the equal sign
Baby Genius—Solving multi-step equations


Table of Contents (cont.)

Graphing
You Are What You Drink—Comparing solutions from equations and inequalities as graphed on a number line
Write Your Own Riddle—Finding coordinates in the Cartesian Coordinate System
Smile!—Graphing coordinates in the Cartesian Coordinate System
You Can Lead Them to Water—Graphing coordinates in the Cartesian Coordinate System
Largest Migrating Mammal—Graphing coordinates in the Cartesian Coordinate System
Crisscross—Graphing linear equations
A Canine Question—Solving systems of equations by graphing linear equations
A Crossword Puzzle of Graphing Terms—Reviewing terminology associated with graphing
Proportion and Percent
A Funny Feline—Setting up ratios in fractional form
The Very Best—Solving proportions
Fractions, Decimals, and Percents—Changing fractions to decimals to percents
Don't Ruffle the Bird's Feathers—Changing fractions to decimals to percents
Chow Time—Solving percent problems
Pet-Pal Parlor—Finding percent increase and percent decrease
Data and Statistics
The Young Vampire—Organizing data in a frequency table and a chart
No Rest for the Weary—Calculating the mean from a set of data
Doggy Diagnosis—Calculating the mean, median, and mode from given data sets
The Land Down Under—Organizing data in a stem and leaf plot
Disguising Data Definitions—Identifying statistical terms
Probability
Heard It Through the Grapevine—Solving permutations, combinations, and factorials
Probably Probability—Determining the probability of a simple event
Know the Terms—Becoming familiar with statistical and probability terminology
Introduction to Geometry
What's Left?—Identifying geometrical terms
Food for Thought—Identifying angle relationships
The Square Team—Identifying angle relationships when parallel lines are cut by a transversal
Mystery Name—Finding the degrees of missing angle measurements in triangles
Vacation Destination—Identifying corresponding parts of congruent triangles
All Aboard!—Writing true conditional statements
Area and Perimeter
Shop 'Til You Drop—Calculating the areas and perimeters of polygons
Speedy the Squirrel—Calculating the areas of triangles and parallelograms
Check, please!—Calculating the areas of trapezoids
A Painful Problem—Calculating the areas and circumferences of circles
Corny Acorns—Calculating the surface areas of prisms
Student Guide
Answer Key

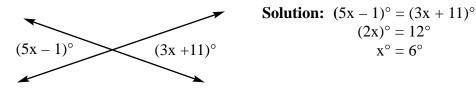
A Penny for Your Thoughts

Directions: Find the prime factorization for each number surrounding the penny. Then complete the statement below by filling in the blanks. To fill in a blank, look at the prime factorization written below it, and insert the matching letter from the penny.

Finish the Statement: A man who constantly says, "A penny for your thoughts" . . .

$\overline{2^4 \times 3^2} \overline{2^2 \times 3^3}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		${2^3 \times 3^3}$	$\overline{2^6}$	$\overline{2^3 \times 5^2}$	
${2^3 \times 7} {2^2 \times 5 \times 29}$	2 x 5 x 7	$\overline{2^3 \times 3^3}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\frac{1}{2 \times 3^2 \times 5}$	5 x 7 2 ⁴ x 5	${2^2 \times 3^3}$
${2^3 \times 5^2} {2 \times 5 \times }$	$\frac{}{7} \qquad \frac{}{2^3 \times 5}$	2 ⁴ x 5	${2^3 \times 5^2}$	${2^2 \times 23}$	${2^2 \times 3^3}$	

Focus: Finding the prime factorization of numbers

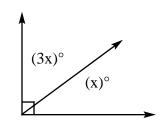

 $(2x)^{\circ} = 12^{\circ}$

 $x^{\circ} = 6^{\circ}$

☐ Vertical, Complementary, and Supplementary Angles

Vertical angles are formed when two lines intersect. The angles opposite each other are called vertical angles, and they are congruent.

Example:



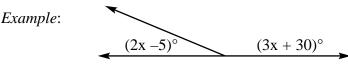
The first angle is $5(6) - 1 = 29^{\circ}$.

The second angle is $3(6) + 11 = 29^{\circ}$.

Complementary angles are two angles whose sum is 90°.

Example:

Solution: $(3x + x)^{\circ} = 90^{\circ}$


$$(4x)^{\circ} = 90^{\circ}$$
$$x^{\circ} = 22.5^{\circ}$$

The larger angle is $3x = 3(22.5) = 67.5^{\circ}$.

The smaller angle is $x = 22.5^{\circ}$.

Supplementary angles are two angles whose sum is 180°.

Solution: $(2x - 5)^{\circ} + (3x + 30)^{\circ} = 180^{\circ}$ $(5x + 25)^{\circ} = 180^{\circ}$ $(5x)^{\circ} = 155^{\circ}$ $x^{\circ} = 31^{\circ}$

The larger angle is $(3x + 30)^{\circ} = 3(31) + 30 = 123^{\circ}$.

The smaller angle is $(2x - 5)^{\circ} = 2(31) - 5 = 57^{\circ}$.

☐ Angles Formed by a Transversal and Parallel Lines

When dealing with angles formed by a transversal and parallel lines, note the following rules:

- Alternate interior angles are congruent. ($\angle 3 \cong \angle 5$, $\angle 4 \cong \angle 6$)
- Alternate exterior angles are congruent. ($\angle 1 \cong \angle 7$, $\angle 2 \cong \angle 8$)
- Vertical angles are congruent. $(\angle 1 \cong \angle 3, \angle 2 \cong \angle 4, \angle 5 \cong \angle 7, \angle 6 \cong \angle 8)$
- Interior angles on the same side are supplementary. ($\angle 4 + \angle 5 = 180^{\circ}$, $\angle 6 + \angle 3 = 180^{\circ}$)
- Exterior angles on the same side are supplementary. ($\angle 1 + \angle 8 = 180^{\circ}, \angle 2 + \angle 7 = 180^{\circ}$)